Abstract

The complexity of streamflow processes inhibits significant information about catchment performance and its sensitivity to climate change. Little is known about the severity of climate change within the coastal area of the monsoon–subtropical zone of climatic transition. This study advances a quasi-local scale analysis to simplify daily streamflow dynamics and their relationship with monthly hydro-climatic series (1981–2020) using six gauging stations on the Buffalo River due to its socio-economic significance. An integrated framework based on continuous wavelet transform (CWT), wavelet coherence (WC), innovative trend analysis (ITA), Mann–Kendall (MK), Sequential Mann–Kendall, and Pettitt tests were employed. CWT showed huge declivity in daily streamflow intensity (7676 to 719), >100 mm/day streamflow frequency (15 to 0), and wetness spell time-gap. WC obtained significant streamflow–rainfall co-movement of 8–196-month periodicities, which characterized Buffalo as anti-phase (1–4-month), lag-lead (8–32-month), and in-phase (64–196-month) in processes. The Buffalo River’s sensitivity to significantly decreasing rainfall trends and increasing temperature trends depicts Streamflow–ENSO teleconnection. Contrarily, ITA and MK exhibited significantly increasing trends of tributaries’ low flow and inferred the perennial status of the catchment. The Pettitt test corroborates the deductions and asserts 1990 (temperature), 1996 (streamflow), and 2004/2013 (rainfall) as the abrupt change points, while SMK captured a critical streamflow slump in 2015–2020. Overall, the study proved the reductionist approach and model framework to achieve the hydrological process simplification and resolution of hotspots of hydrologic extremes within a bimodal climate with complex topography. This study remarks on the management policy of the BR and provides a reference for managing water resources and catchment hydro-climatic extremes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.