Abstract

Interfacial bonding that directly influences the functional and mechanical properties of metal/nonmetal composites is commonly estimated by destructive pull-off measurements such as scratch tests, etc. However, these destructive methods may not be applicable under certain extreme environments; it is urgently necessary to develop a nondestructive quantification technique to determine the composite's performance. In this work, the time-domain thermoreflectance (TDTR) technique is applied to study the inter-relationship between interfacial bonding and interface characteristics through thermal boundary conductance (G) measurements. We think that interfacial phonon transmission capability plays a decisive role in influencing interfacial heat transport, especially for scenarios with a large mismatch of phonon density of states (PDOS). Moreover, we demonstrated this method at (100) and (111) cubic boron nitride/copper (c-BN/Cu) interfaces by both experimental and simulation efforts. The results show that the TDTR-measured G of the (100) c-BN/Cu interface (30 MW/m2·K) is about 20% higher than that of the (111) c-BN/Cu (25 MW/m2·K), which is ascribed to that higher interfacial bonding of the (100) c-BN/Cu endows it with better interfacial phonon transmission capability. In addition, detailed comparison of 10+ other metal/nonmetal interfaces exhibits similar positive relationship for interfaces with a large PDOS mismatch but negative relationship for interfaces with a small PDOS mismatch. The latter one is attributed to that extra inelastic phonon scattering and electron transport channels abnormally promoting interfacial heat transport. This work may provide some insights into quantitatively establishing inter-relationship between interfacial bonding and interface characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call