Abstract
As a means to adjust the temperature of the thermal zones in buildings, building thermal mass is regarded as one of the essential sources of energy flexibility. It is still challenging to quantify the energy flexibility of passive thermal mass, making it oppugning to use thermal mass for buildings’ demand response (DR). A method to accurately quantify the energy flexibility from heating, ventilation, and air conditioning systems (HVAC) is important for buildings to participate in DR projects. This paper proposes a novel data-driven model to quantify HVAC’s electrical demand under dynamic global temperature adjustment. The Markov chain is first used to implement an effective sampling method to produce a global temperature resetting schedule representing different temperature resetting. Next, EnergyPlus evaluates the HVAC electrical demand under the various temperature reset scenarios. In the end, the LightGBM algorithm is used to develop the data-driven model. Having validated the proposed model, the case study was conducted in a DOE reference office building for EnergyPlus. Results demonstrate that the Markov chain outperforms the probabilistic method when sampling temperature setpoint schedules. In the future, the proposed data-driven model can be used to evaluate the flexibility capacity of an energy management system in grid-integrated buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.