Abstract

BackgroundThe use of embedded smartphone sensors offers opportunities to measure physical activity (PA) and human movement. Big data—which includes billions of digital traces—offers scientists a new lens to examine PA in fine-grained detail and allows us to track people’s geocoded movement patterns to determine their interaction with the environment.ObjectiveThe objective of this study was to examine the validity of the Movn smartphone app (Moving Analytics) for collecting PA and human movement data.MethodsThe criterion and convergent validity of the Movn smartphone app for estimating energy expenditure (EE) were assessed in both laboratory and free-living settings, compared with indirect calorimetry (criterion reference) and a stand-alone accelerometer that is commonly used in PA research (GT1m, ActiGraph Corp, convergent reference). A supporting cross-validation study assessed the consistency of activity data when collected across different smartphone devices. Global positioning system (GPS) and accelerometer data were integrated with geographical information software to demonstrate the feasibility of geospatial analysis of human movement.ResultsA total of 21 participants contributed to linear regression analysis to estimate EE from Movn activity counts (standard error of estimation [SEE]=1.94 kcal/min). The equation was cross-validated in an independent sample (N=42, SEE=1.10 kcal/min). During laboratory-based treadmill exercise, EE from Movn was comparable to calorimetry (bias=0.36 [−0.07 to 0.78] kcal/min, t82=1.66, P=.10) but overestimated as compared with the ActiGraph accelerometer (bias=0.93 [0.58-1.29] kcal/min, t89=5.27, P<.001). The absolute magnitude of criterion biases increased as a function of locomotive speed (F1,4=7.54, P<.001) but was relatively consistent for the convergent comparison (F1,4=1.26, P<.29). Furthermore, 95% limits of agreement were consistent for criterion and convergent biases, and EE from Movn was strongly correlated with both reference measures (criterion r=.91, convergent r=.92, both P<.001). Movn overestimated EE during free-living activities (bias=1.00 [0.98-1.02] kcal/min, t6123=101.49, P<.001), and biases were larger during high-intensity activities (F3,6120=1550.51, P<.001). In addition, 95% limits of agreement for convergent biases were heterogeneous across free-living activity intensity levels, but Movn and ActiGraph measures were strongly correlated (r=.87, P<.001). Integration of GPS and accelerometer data within a geographic information system (GIS) enabled creation of individual temporospatial maps.ConclusionsThe Movn smartphone app can provide valid passive measurement of EE and can enrich these data with contextualizing temporospatial information. Although enhanced understanding of geographic and temporal variation in human movement patterns could inform intervention development, it also presents challenges for data processing and analytics.

Highlights

  • The World Health Organization (WHO) recognizes physical inactivity as one of the leading global risk factors for morbidity and premature mortality [1]

  • We aimed to examine the validity of the Movn smartphone app for estimating physical activity (PA) energy expenditure (EE) and quantifying human movement patterns

  • These findings are comparable with the recent validations of Android smartphone-based activity measurement tools, which demonstrated strong correlations but larger measurement error at higher activity intensity levels when compared with the ActiGraph GTX3 accelerometer [7,8]

Read more

Summary

Introduction

The World Health Organization (WHO) recognizes physical inactivity as one of the leading global risk factors for morbidity and premature mortality [1]. Different approaches are needed to reduce the burden of disease associated with physical inactivity. Technological innovations such as smartphones and wearable sensors offer potential to improve the reach, enhance delivery (greater frequency of contact and duration of intervention), and increase effectiveness of interventions to improve PA levels. Despite their potential, it is unclear whether these new devices provide research-grade precision measurement. It is unclear whether these new devices provide research-grade precision measurement To address this concern, a number of validation studies have been conducted [6-8]. Big data—which includes billions of digital traces—offers scientists a new lens to examine PA in fine-grained detail and allows us to track people’s geocoded movement patterns to determine their interaction with the environment

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.