Abstract

This paper presents a simple experimental-informed theory describing the drug release process from a temperature-responsive core-shell microgel. In stark contrast to the commonly employed power-law models, we couple electric, hydrophobic, and steric factors to characterize the impact of drug-polymer pair interaction on the release kinetics. To this end, we also propose a characteristic time, depicting the drug release process as an interplay between kinetics and thermodynamics. In some instances, the negative correlation between the diffusivity and the (thermodynamics) drug-polymer interaction renders the drug release time non-trivial. In conclusion, our theory establishes a mechanistic understanding of the drug release process, exploring the effect of (hydrophobic adhesion) attractive and (steric exclusion) repulsive pair interactions between the drugs and the microgel in the presence of temperature-induced volume phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call