Abstract

Impervious surface distribution and its temporal changes are considered key urbanization indicators and are utilized for analysing urban growth and influences of urbanization on natural environments. Recently, urban impervious surface information was extracted from medium/coarse resolution remote sensing imagery (e.g. Landsat ETM+ and AVHRR) through spectral analytical methods (e.g. spectral mixture analysis (SMA), regression tree, etc.). Few studies, however, have attempted to generate impervious surface information from high resolution remotely sensed imagery (e.g. IKONOS and Quickbird). High resolution images provide detailed information about urban features and are, therefore, more valuable for urban analysis. The improved spatial resolution, however, also brings new challenges when existing spectral analytical methods are applied. In particular, a higher spatial resolution leads to reduced boundary effects and increased within‐class variability. Taking Grafton, Wisconsin, USA as a study site, this paper analyses the spectral characteristics of IKONOS imagery and explores the applicability of SMA for impervious surface estimation. Results suggest that with improved spatial resolution, IKONOS imagery contains 40–50% of mixed urban pixels for the study area, and the within‐class variability is a severe problem for spectral analysis. To address this problem, this paper proposes two approaches, interior end‐member set selection and spectral normalization, for SMA. Analysis of results indicates that these approaches can reasonably reduce the problems associated with boundary effects and within‐class variability, therefore generating better impervious surface estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.