Abstract
Accurate research on carbon emission spatial distribution is vital for achieving carbon neutrality. Previous studies suffered from scale effects, demanding enhanced resolution. This study collected and computed land use carbon emission data for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). It also introduced a novel method to downscale this data into 30 m raster format using night light and NDVI data. The study showed a consistent annual rise in GBA land use carbon emissions, accompanied by increasing disparities. At the city level, emissions in the highest-ranking cities were 58 times higher than those in the lowest-ranking ones. Impervious land carbon emissions held over 90% sway over total carbon emissions, making them the primary driver of land use-related carbon emissions. Remarkably, high-emission zones, such as coastal cities Guangzhou, Foshan, Dongguan, and Hong Kong, expanded outward, forming multi-tiered, high-density carbon areas, giving rise to an “∩” shape pattern. Carbon emission change rates from cropland were modest, characterized by a pattern of fluctuation. Moreover, spatial autocorrelation and K-means cluster analyses uncovered a noticeable spatial correlation among urban land use carbon emissions in the GBA. Consequently, a compelling case exists for enhancing inter-city cooperation to collectively pursue regional emission reduction objectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.