Abstract

Between 15% and 30% of edge-localized-mode (ELM) heat flux can be deposited to regions outside the main divertor including the far scrape-off-layer (SOL), private flux region (PFR), and secondary divertor inner target. Analysis shown here demonstrates that type-I and small ELM plasmas are transported to the PFR and to the secondary inner divertor, which is magnetically isolated from the outer divertor, leading to well-defined heat flux profiles and with peak values that can surpass those at the secondary outer target. Such features are consistently observed for pedestal collisionalities from νe* ∼ 1.5 to νe* ∼ 3.9. Heat flux profiles of the examined ELM types feature rippled structures due to bursts in the outer far-SOL region but not on the secondary inner target, causing long decay lengths in the time-averaged ELM profiles. The contribution of each ELM type to the total time-averaged power deposited to the secondary divertor has been evaluated, showing that grassy ELMs contribute ∼8%, small ELMs ∼67%, and type-I ELMs ∼85%. These findings imply that small ELMs may yet pose a concern for future machines if some regions of the main wall are not designed to withstand significant heat and particle fluxes. Due to the low intra-ELM heat flux contribution, however, the grassy ELM regime is an attractive option for an ELMing scenario in future machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call