Abstract

This study aims to quantify greenhouse gases (GHGs) from the production, transportation and utilization of charcoal and to assess the possibilities of decreasing greenhouse gases (GHGs) from the charcoal industry in general in Uganda. It also aims to assess the emission intensity of the Ugandan “charcoal production” sector compared to that of some other major charcoal producing nations. This work was done in accordance with ISO 14040 methodology for life-cycle assessment (LCA), using GABi 4.0—a software for life-cycle assessment. A cradle-to-grave study was conducted, excluding emissions arising from machinery use during biomass cultivation and harvesting. The distance from charcoal production locations to Kampala was estimated using ArcGIS 10.0 software and a GPS tool. Emission data from a modern charcoal production process (PYREG methane-free charcoal production equipment), which complies with the German air quality standards (TA-Luft), was compared with emissions from a traditional charcoal production process. Four coupled scenarios were modelled to account for differences in the quantity of greenhouse gases emitted from the “traditional charcoal production phase”, “improved charcoal production phase (biomass feedstock sourced sustainably and unsustainably)”, “transportation phase” and “utilization phase”. Data for this study was obtained via literature review and onsite measurements. The results showed that greenhouse gases emitted due to charcoal supply and use of traditional production technique in Kampala was 1,554,699 tCO2eq, with the transportation phase accounting for approximately 0.15 % of total greenhouse gases emitted. The utilization phase (charcoal cookstoves) emitted 723,985 tCO2eq (46.6 %), while the charcoal production phase emitted 828,316 tCO2eq (53.3 %). Changing the charcoal production technology from a traditional method to an improved production method (PYREG charcoal process) resulted in greenhouse gases reductions for the city of 230,747 tCO2eq; however, by using sustainably sourced biomass, this resulted in reductions of 801,817 tCO2eq. This study showcased and quantified possible GHG emission reduction scenarios for the charcoal industry in Uganda. The result of 3 tCO2eq emitted per tonne of charcoal produced, using earth mound method, can be applied to other countries in Eastern Africa where similar charcoal production methods are used; this will allow for somewhat better regional estimates of the inventory of greenhouse gas emissions from the production of charcoal. The results of this study also suggests that the primary use of charcoal for cooking will lead to increases in GHG emissions and increases in deforestation on the long term, if legal frameworks are not made to ensure that biomass used for charcoal production is obtained via sustainable sources or if alternative cheap energy-generating technologies for cooking are not developed and deployed to the masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call