Abstract

The assessment of greenhouse gases (GHGs) and air pollutants emitted to and removed from the atmosphere ranks high on international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need to consider the uncertainty in inventories of GHG emissions. The approaches to address uncertainty discussed in this special issue reflect attempts to improve national inventories, not only for their own sake but also from a wider, system analytic perspective. They seek to strengthen the usefulness of national emission inventories under a compliance and/or global monitoring and reporting framework. The papers in this special issue demonstrate the benefits of including inventory uncertainty in policy analyses. The issues raised by the authors and featured in their papers, along with the role that uncertainty analysis plays in many of their arguments, highlight the challenges and the importance of dealing with uncertainty. While the Intergovernmental Panel on Climate Change (IPCC) clearly stresses the value of conducting uncertainty analyses and offers guidance on executing them, the arguments made here in favor of performing these studies go well beyond any suggestions made by the IPCC to date. Improving and conducting uncertainty analyses are needed to develop a clear understanding and informed policy. Uncertainty matters and is key to many issues related to inventorying and reducing emissions. Considering uncertainty helps to avoid situations that can create a false sense of certainty or lead to invalid views of subsystems. Dealing proactively with uncertainty allows for the generation of useful knowledge that the international community should have to hand while strengthening the 2015 Paris Agreement, which had been agreed at the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC). However, considering uncertainty does not come free. Proper treatment of uncertainty is demanding because it forces us to take the step from “simple to complex” and to grasp a holistic system view. Only, thereafter, can we consider potential simplifications. That is, comprehensive treatment of uncertainty does not necessarily offer quick or easy solutions for policymakers. This special issue brings together 13 papers that resulted from the 2015 (4th) International Workshop on Uncertainty in Atmospheric Emissions, in Cracow, Poland. While they deal with many different aspects of the uncertainty in emission estimates, they are guided by the same principal question: “What GHGs shall be verified at what spatio-temporal scale to support conducive legislation at local and national scales, while ensuring effective governance at the global scale?” This question is at the heart of mitigation and adaptation. It requires an understanding of the entire system of GHG sources and sinks, their spatial characteristics and the temporal scales at which they react and interact, the uncertainty (accuracy and/or precision) with which fluxes can be measured, and last but not least, the consequences that follow from all of the aforementioned aspects, for policy actors to frame compliance and/or global monitoring and reporting agreements. This bigger system context serves as a reference for the papers in the special issue, irrespective of their spatio-temporal focus, and is used as a guide for the reader.

Highlights

  • This special issue has been compiled to enhance understanding of the uncertainty in estimating greenhouse gas (GHG) emissions and to provide guidance on dealing with the challenges resulting from those uncertainties

  • The approaches to addressing uncertainty discussed in this special issue represent an attempt to improve national inventories, for their own sake and from a wider, system analytical perspective that seeks to strengthen their usefulness under a compliance and/or global monitoring and reporting framework

  • The issues raised by the authors and featured in their papers, and the role played by uncertainty analysis in many of their arguments, highlight the importance of such efforts

Read more

Summary

Introduction

This special issue has been compiled to enhance understanding of the uncertainty in estimating greenhouse gas (GHG) emissions and to provide guidance on dealing with the challenges resulting from those uncertainties. Such challenges include, but are not limited to the following: (i) accurately and precisely accounting for emissions in space and time (and their verification); (ii) complying with emission reduction commitments under uncertainty; (iii) dealing with the risk of exceeding future temperature targets; (iv) evaluating mitigation—both domestic and in other countries—versus adaptation in the presence of uncertainty; and (v) trading inherently uncertain emission permits. The special issue brings together 13 contributions that originated as short papers presented at the 2015 (4th) International Workshop on Uncertainty in Atmospheric Emissions, in Cracow, Poland Their common concern is to highlight issues where our understanding of uncertainty still falls short. All have undergone two to three rounds of improvement, and the short papers have matured into the longer, peer-reviewed papers that are presented here

The rationale for estimating GHG emissions and removals
The rationale for conducting uncertainty analyses
What did we know about uncertainty?
Group I
Group II
Findings
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call