Abstract

Incorporating species’ ability to adaptively respond to climate change is critical for robustly predicting persistence. One such example could be the adaptive role of algal symbionts in setting coral thermal tolerance under global warming and ocean acidification. Using a global ecological and evolutionary model of competing branching and mounding coral morphotypes, we show symbiont shuffling (towards taxa with increased heat tolerance) was more effective than symbiont evolution in delaying coral-cover declines, but stronger warming rates (high emissions scenarios) outpace the ability of these adaptive processes and limit coral persistence. Acidification has a small impact on reef degradation rates relative to warming. Global patterns in coral reef vulnerability to climate are sensitive to the interaction of warming rate and adaptive capacity and cannot be predicted by either factor alone. Overall, our results show how models of spatially resolved adaptive mechanisms can inform conservation decisions. The authors model the role of algal symbiont shuffling and evolution in coral resilience to warming and ocean acidification, globally. They find that shuffling is more effective than evolution, and show global patterns of vulnerability due to the interaction of warming rate and adaptive capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call