Abstract

Background and purposeTo assess the sensitivity of non-localized, whole-head 1H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations — metabolite metrics often used as surrogate markers in neurological pathologies. Materials and methodsIn this prospective study, four back-to-back (single imaging session) and three serial (successive sessions) non-localizing, ~3min 1H-MRS (TE/TR/TI=5/104/940ms) scans were performed on 18 healthy young volunteers: 9 women, 9 men: 29.9±7.6 [mean±standard deviation (SD)] years old. These were analyzed by calculating a within-subject coefficient of variation (CV=SD/mean) to assess intra- and inter-scan repeatability and prediction intervals. This study was Health Insurance Portability and Accountability Act compliant. All subjects gave institutional review board-approved written, informed consent. ResultsThe intra-scan CVs for the NAA, Glx, Cr and Cho were: 3.9±1.8%, 7.3±4.6%, 4.0±3.4% and 2.5±1.6%, and the corresponding inter-scan (longitudinal) values were: 7.0±3.1%, 10.6±5.6%, 7.6±3.5% and 7.0±3.9%. This method is shown to have 80% power to detect changes of 14%, 27%, 26% and 19% between two serial measurements in a given individual. ConclusionsSubject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1H-MRS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.