Abstract
We propose an information-theoretic framework to quantify multipartite correlations in classical and quantum systems, answering questions such as what is the amount of seven-partite correlations in a given state of ten particles? We identify measures of genuine multipartite correlations, i.e., statistical dependencies that cannot be ascribed to bipartite correlations, satisfying a set of desirable properties. Inspired by ideas developed in complexity science, we then introduce the concept of weaving to classify states that display different correlation patterns, but cannot be distinguished by correlation measures. The weaving of a state is defined as the weighted sum of correlations of every order. Weaving measures are good descriptors of the complexity of correlation structures in multipartite systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.