Abstract

Employing diffuse reflection ultraviolet visible (UV–Vis) spectroscopy we developed an approach that is capable to quantitatively determine flux residues on a technical copper surface. The technical copper surface was soldered with a no-clean flux system of organic acids. By a post-solder cleaning step with different cleaning parameters, various levels of residues were produced. The surface was quantitatively and qualitatively characterized using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and diffuse reflection UV–Vis spectroscopy. With the use of a multivariate analysis (MVA) we examined the UV–Vis data to create a correlation to the carbon content on the surface. The UV–Vis data could be discriminated for all groups by their level of organic residues. Combined with XPS the data were evaluated by a partial least squares (PLS) regression to establish a model. Based on this predictive model, the carbon content was calculated with an absolute error of 2.7 at.%. Due to the high correlation of predictive model, the easy-to-use measurement and the evaluation by multivariate analysis the developed method seems suitable for an online monitoring system. With this system, flux residues can be detected in a manufacturing cleaning process of technical surfaces after soldering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.