Abstract

Fluctuations of state variables play a pivotal role in analyzing small signal stability of the power system due to the integration of renewable energy sources. This paper develops a theoretical analysis methodology by using the power spectral density (PSD) for capturing the frequency and amplitude of state variable fluctuations in heterogeneous power systems with stochastic excitations. The fluctuations in generation and consumption occurring simultaneously are modeled by stochastic Ornstein-Uhlenbeck processes. The PSDs of the state variable fluctuations can be analytically calculated. PSD-based quantities have been proposed to evaluate angle and frequency deviations. Moreover, a global performance metric has been presented to measure the synchronization stability and calculated using the PSDs of frequency deviations. The underlying mathematical relationship between the metric and the primary control effort mimicking the H2-norm performance is explained in detail. Finally, the proposed analysis methodology is numerically illustrated on the IEEE RTS-96 test case. We investigate the impact of auto-correlations of stochastic processes on stability. Our results show the metric can be an alternative quantitative index of stability. We further find that the inertia allocation does not provide significant grid stability gain under small stochastic power fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.