Abstract
In the development of hydrocarbon fields, it is becoming known that CO2 injection (which is sometimes done to improve hydrocarbon production) can cause pore blockage and wettability alteration by the promotion of asphaltene deposition. In hydrocarbon reservoirs, the result is poor oil recovery performance during carbon dioxide (CO2) injection. If CO2 is being injected into a legacy hydrocarbon reservoir (i.e., one that still contains residual oil) the same process will occur. Once again, the ability of fluid (this time supercritical CO2) to flow will be impeded, but it is also possible that asphaltene deposition will also reduce the overall pore volumes in which CO2 could otherwise be stored. In this work, the residual oil distribution and the permeability decline caused by organic and inorganic precipitation after miscible CO2 flooding and water-alternating-CO2 (CO2-WAG) flooding have been studied by carrying out core-flooding experiments at high pressures and temperatures in an artificial three layer system. For simple CO2 injection during CCUS operations, flooding experimental results indicate that the low-permeability layers retain a large oil production potential even in the late stages of production, which could impede CO2 emplacement and provide significant heterogeneity, while the permeability decline due to asphaltene precipitation is more significant in high-permeability rocks. In contrast, we found that CO2-WAG can reduce the influence of heterogeneity on the oil production, but it results in more serious reservoir damage, with permeability decline caused by CO2–brine–rock interactions becoming significant. In addition, miscible CO2 flooding has been carried out for rocks with similar permeabilities but different wettabilities and different pore-throat microstructures in order to study the effects of wettability and pore-throat microstructure on formation damage. Reservoir rocks with smaller pore-throat sizes and more heterogeneous pore-throat microstructures were found to be more sensitive to asphaltene precipitation, making these less attractive for CCUS reservoirs. However, rocks with larger, more connected pore-throat microstructures became less water wet due to asphaltene precipitation to pore surfaces, ultimately leading to a lower pore volume in which CO2 can be stored. Taken together, there may be a case for not simply injecting CO2 in CCUS operations, but alternating the CO2 injection with injection of water in order to stabilise CO2 flow and reduce formation damage by asphaltene precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.