Abstract

AbstractAs one part of the ‘Three Norths’ forest protection system, dense farmland shelterbelt networks in northeastern China could greatly modify water and sediment flows. In this paper, catchment soil erosion rate and sediment yield (SY) that are impacted by farmland shelterbelts were estimated using WaTEM/SEDEM model. The shelterbelts reduced catchment soil erosion and SY to some extent. The mean soil erosion rate and specific sediment yield (SSY; defined as the ratio of SY to catchment area; t km−2 yr−1) of the 25 reservoir catchments decreased from 351.6 and 93.9 t km−2 yr−1 under the supposed scenario without shelterbelts to 331.1 t km−2 yr−1 and 86.3% t km−2 yr−1 under the current situation with shelterbelts. The sediment trap efficiencies (STEs) varied from 0.01% to 23.6% with an average value of 7.6%. The STEs were significantly correlated with shelterbelt density, catchment perimeter, topographic factors, RUSLEP‐factor and land use patterns including patch density (PD), patch cohesion index (COHESION), Shannon's diversity index (SHDI) and aggregation index (AI). The multiple regression equation involving factors of catchment's topography and morphology and land use pattern has a satisfactory performance, and mean slope gradient (MSG) and AI explained most of the variability of shelterbelts’ STE. This information can help land managers to better design shelterbelts and to reduce water‐derived soil loss at catchment scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.