Abstract

Data store replication results in a fundamental trade-off between operation latency and data consistency. At the weak end of the consistency spectrum is eventual consistency providing no limit to the staleness of data returned. However, anecdotally, eventual consistency is often “good enough” for practitioners given its latency and availability benefits. In this work, we explain why eventually consistent systems are regularly acceptable in practice, analyzing both the staleness of data they return and the latency benefits they offer. We introduce Probabilistically Bounded Staleness (PBS), a consistency model which provides expected bounds on data staleness with respect to both versions and wall clock time. We derive a closed-form solution for versioned staleness as well as model real-time staleness under Internet-scale production workloads for a large class of quorum-replicated, Dynamo-style stores. Using PBS, we measure the latency–consistency trade-off for partial, non-overlapping quorum systems, including limited multi-object operations. We quantitatively demonstrate how and why eventually consistent systems frequently return consistent data within tens of milliseconds while offering significant latency benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.