Abstract

Response times (RT) distributions are routinely used by psychologists and neuroscientists in the assessment and modeling of human behavior and cognition. The statistical properties of RT distributions are valuable in uncovering unobservable psychological mechanisms. A potentially important statistical aspect of RT distributions is their entropy. However, to date, no valid measure of entropy on RT distributions has been developed, mainly because available extensions of discrete entropy measures to continuous distributions were fraught with problems and inconsistencies. The present work takes advantage of the cumulative residual entropy (CRE) function-a well-known differential entropy measure that can circumvent those problems. Applications of the CRE to RT distributions are presented along with concrete examples and simulations. In addition, a novel measure of instantaneous CRE is developed that captures the rate of entropy reduction (or information gain) from a stimulus as a function of processing time. Taken together, the new measures of entropy in RT distributions proposed here allow for stronger statistical inferences, as well as motivated theoretical interpretations of psychological constructs such as mental effort and processing efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.