Abstract
Weakly collisional and collisionless plasmas are typically far from local thermodynamic equilibrium (LTE), and understanding energy conversion in such systems is a forefront research problem. The standard approach is to investigate changes in internal (thermal) energy and density, but this omits energy conversion that changes any higher-order moments of the phase space density. In this Letter, we calculate from first principles the energy conversion associated with all higher moments of the phase space density for systems not in LTE. Particle-in-cell simulations of collisionless magnetic reconnection reveal that energy conversion associated with higher-order moments can be locally significant. The results may be useful in numerous plasma settings, such as reconnection, turbulence, shocks, and wave-particle interactions in heliospheric, planetary, and astrophysical plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.