Abstract
We perform a suite of two- and three-dimensional magnetohydrodynamic (MHD) simulations with the Athena code of the non-driven Kelvin-Helmholtz instability in the subsonic, weak magnetic field limit. Focusing the analysis on the non-linear turbulent regime, we quantify energy transfer on a scale-by-scale basis and identify the physical mechanisms responsible for energy exchange by developing the diagnostic known as spectral energy transfer function analysis. At late times when the fluid is in a state of MHD turbulence, magnetic tension mediates the dominant mode of energy injection into the magnetic reservoir, whereby turbulent fluid motions twist and stretch the magnetic field lines. This generated magnetic energy turbulently cascades to smaller scales, while being exchanged backwards and forwards with the kinetic energy reservoir, until finally being dissipated. Incorporating explicit dissipation pushes the dissipation scale to larger scales than if the dissipation were entirely numerical. For scales larger than the dissipation scale, we show that the physics of energy transfer in decaying MHD turbulence is robust to numerical effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.