Abstract

Temporal correlations in neuronal spike trains are known to introduce redundancy to stimulus encoding. However, exact methods to describe how these correlations impact neural information transmission quantitatively are lacking. Here, we provide a general measure for the information carried by correlated rate modulations only, neglecting other spike correlations, and use it to investigate the effect of rate correlations on encoding redundancy. We derive it analytically by calculating the mutual information between a time-correlated, rate modulating signal and the resulting spikes of Poisson neurons. Whereas this information is determined by spike autocorrelations only, the redundancy in information encoding due to rate correlations depends on both the distribution and the autocorrelation of the rate histogram. We further demonstrate that at very small signal strengths the information carried by rate correlated spikes becomes identical to that of independent spikes, in effect measuring the signal modulation depth. In contrast, a vanishing signal correlation time maximizes information but does not generally yield the information of independent spikes. Overall, our study sheds light on the role of signal-induced temporal correlations for neural coding, by providing insight into how signal features shape redundancy and by establishing mathematical links between existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call