Abstract

2D and 3D multi-physics experiment-based nonlinear models with fluid-structure interactions (FSI) and structure-structure interactions (SSI) are introduced to model blood flow and stress/strain distributions in stenotic arteries with lipid pools. Material properties for the vessel and plaque are based on experimental measurements and information available in the literature (Huang et. al., 2001; Tang et. al., 2001). The Navier-Stokes equations are used as the governing equations for the fluid. Mooney-Rivlin models are used for both arteries and lipid cores. A well-tested finite element package ADINA is used to solve the models to perform flow and stress/strain analysis. Our results indicate that artery plaque stress/strain distributions are affected considerably (50%–400% or even more) by vessel material properties, stenosis severity and eccentricity, tube axial pre-stretch, pressure conditions, lipid core material property, size, position and geometry, and fluid-structure and structure-structure (vessel wall and lipid core) interactions. Differences in model assumptions and controlling factor specifications must be taken into consideration when interpreting the significance of computational results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call