Abstract

We employ microparticle image velocimetry to investigate laminar microflows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal microgrooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase in the slip length when the width of the microgrooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip [Z. Angew. Math. Phys. 23, 353 (1972)] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared with the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic microridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.