Abstract

Vibrational sum-frequency generation (SFG) spectroscopy is demonstrated as a fast method to quantify variations of the electric double-layer potential ϕ0 at liquid–gas interfaces. For this, mixed solutions of nonionic tetraethyleneglycol-monodecylether (C10E4) and cationic hexadecyltrimethylammonium bromide (C16TAB) surfactants were investigated using SFG spectroscopy and a thin-film pressure balance (TFPB). Derjaguin–Landau–Verwey–Overbeek analysis of disjoining pressure isotherms obtained with the TFPB technique provides complementary information on ϕ0, which we apply to validate the results from SFG spectroscopy. By using a single ϕ0 value, we can disentangle χ(2) and χ(3) contributions to the O–H stretching modes of interfacial water molecules in the SFG spectra. Having established the latter, we show that unknown double-layer potentials at the liquid–gas interface from solutions with different C16TAB/C10E4 mixing ratios can be obtained from an analysis of SFG spectra and are in excellent agreement with the complementary results from the TFPB technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call