Abstract
IntroductionPolicy responses to the COVID-19 pandemic, such as the NY on Pause stay-at-home order (March 22 – June 8, 2020), substantially reduced traffic and traffic-related air pollution (TRAP) in New York City (NYC). We evaluated the magnitude of TRAP decreases and examined the role of modifying factors such as weekend/weekday, road proximity, location, and time-of-day. MethodsHourly nitrogen dioxide (NO2) concentrations from January 1, 2018 through June 8, 2020 were obtained from the Environmental Protection Agency's Air Quality System for all six hourly monitors in the NYC area. We used an interrupted time series design to determine the impact of NY on Pause on NO2 concentrations, using a mixed effects model with random intercepts for monitor location, adjusted for meteorology and long-term trends. We evaluated effect modification through stratification. ResultsNO2 concentrations decreased during NY on Pause by 19% (-3.2 ppb, 95% confidence interval [CI]: -3.5, -3.0), on average, compared to pre-Pause time trends. We found no evidence for modification by weekend/weekday, but greater decreases in NO2 at non-roadside monitors and weak evidence for modification by location. For time-of-day, we found the largest decreases for 5 am (27%, -4.5 ppb, 95% CI: -5.7, -3.3) through 7 am (24%, -4.0 ppb, 95% CI: -5.2, -2.8), followed by 6 pm and 7 pm (22%, -3.7 ppb, 95% CI: -4.8, -2.6 and 22%, -4.8, -2.5, respectively), while the smallest decreases occurred at 11 pm and 1 am (both: 11%, -1.9 ppb, 95% CI: -3.1, -0.7). ConclusionNY on Pause's impact on TRAP varied greatly diurnally. Decreases during early morning and evening time periods are likely due to decreases in traffic. Our results may be useful for planning traffic policies that vary by time of day, such as congestion tolling policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.