Abstract

Studying the multivariate extension of copula correlation yields a dimension reduction principle, which turns out to be strongly related with the ‘simple measure of conditional dependence’ T recently introduced by Azadkia and Chatterjee (2021). In the present paper, we identify and investigate the dependence structure underlying this dimension reduction principle, provide a strongly consistent estimator for it, and demonstrate its broad applicability. For that purpose, we define a bivariate copula capturing the scale-invariant extent of dependence of an endogenous random variable Y on a set of d≥1 exogenous random variables X=(X1,…,Xd), and containing the information whether Y is completely dependent on X, and whether Y and X are independent. The dimension reduction principle becomes apparent insofar as the introduced bivariate copula can be viewed as the distribution function of two random variables Y and Y′ sharing the same conditional distribution and being conditionally independent given X. Evaluating this copula uniformly along the diagonal, i.e., calculating Spearman’s footrule, leads to an unconditional version of Azadkia and Chatterjee’s ‘simple measure of conditional dependence’ T. On the other hand, evaluating this copula uniformly over the unit square, i.e., calculating Spearman’s rho, leads to a distribution-free coefficient of determination (also known as ‘copula correlation’). Several real data examples illustrate the importance of the introduced methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.