Abstract

We numerically calculate drug release profiles from simple spherical devices using Monte Carlo simulations, when diffusion is the dominant release mechanism. Release curves are accurately described by the stretched exponential function, also known as the Weibull function. The dependence of the two stretched exponential parameters on the size of the spherical device and the drug diffusion coefficient is investigated and simple analytical relations are provided. Release kinetics does not depend on the initial drug concentration. The obtained results are compared with predictions derived from the analytical solution of Fick's second law of diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.