Abstract

Digital elevation models (DEMs) are representations of topography with inherent errors that constitute uncertainty. DEM data are often used in analyses without quantifying the effects of these errors. This paper describes a Monte Carlo methodology for evaluation of the effects of uncertainty on elevation and derived topographic parameters. Four methods for representing DEM uncertainty that utilize metadata and spatial characteristics of a DEM are presented. Seven statistics derived from simulation results were used to quantify the effect of DEM error. When uncertainty was quantified by the average relative absolute difference, elevation did not deviate. The range of deviation across the four methods for slope was 5 to 8 percent, 460 to 950 percent for derived catchment areas and 4 to 9 percent for the topographic index. This research demonstrates how application of this methodology can address DEM uncertainty, contributing to more responsible use of elevation and derived topographic parameters, and ultimately results obtained from their use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.