Abstract
Although modern data-driven campaigning (DDC) is not entirely new, scholars have typically relied on reports and interviews of practitioners to understand its use. However, the advent of public ad libraries from Meta and Google provides an opportunity to measure the scope and variation in DDC practice in advertising across different types of sponsors and within sponsors across platforms. Using textual and audiovisual processing, we create a database of ads from the 2022 US elections. These data allow us to create an index that quantifies the extent of DDC at the level of the sponsor and platform. This index takes into account both the number of unique creatives placed and the similarity across those creatives. In addition, we explore the impact of sponsor resources, the office being sought, and the competitiveness of the race on the measure of DDC sophistication. Ultimately, our research establishes a measurement strategy for DDC that can be applied across ad sponsors, campaigns, parties, and even countries. Understanding the extent of DDC is vital for policy discussions surrounding the regulation of microtargeting and data privacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.