Abstract

Crack paths under both fatigue and fracture conditions are governed by the crack tip displacement field and the material deformation characteristics, including those influenced by metallurgical anisotropy. Experimental techniques such as thermoelasticity and photoelasticity have been successfully used to characterise the elastic stress fields around cracks but they do not take into account either plasticity or anisotropy. Considerable work has been carried out to characterise crack tip stress fields from displacement measurements. The current method of choice for obtaining displacement field data is digital image correlation (DIC) which has undergone significant advances in the recent years. The ease of use and capabilities of the technique for full field displacements has led to improved methods for characterising crack tip displacement fields based on data obtained from DIC. This paper gives an overview of some of the applications of DIC for crack tip characterisation such as K, T-stress and crack tip opening angle (CTOA) measurements as well as data obtained from 3D measurements of a propagating crack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call