Abstract

Terrestrial arthropods play an important role in our environment. Quantifying arthropods in a way that allows for a precise index or estimate of density requires a method with high detection probability and a consistent sampling area. We used manufactured sticky traps to compare abundance, total length (a surrogate for biomass), richness, and Shannon diversity of corticolous arthropods among the boles of 5 tree species. Efficacy of this method was adequate to detect variation in corticolous arthropods among tree species and provide a standard error of the mean that was <20% of the mean for all estimates with sample sizes from 7 to 15 individual trees of each species. Our results indicate, even with these moderate sample sizes, the level of precision of arthropod community metrics produced with this approach is adequate to address most ecological questions regarding temporal and spatial variation in corticolous arthropods. Results from this method differ from other quantitative approaches such as chemical knockdown, visual inspection, and funnel traps in that they provide an indication of corticolous arthropod activity over a relatively long-term, better including temporary bole residents, flying arthropods that temporarily land on the tree bole and crawling arthropods that use the tree bole as a travel route from the ground to higher forest foliage. Furthermore, we believe that commercially manufactured sticky traps provide more precise estimates and are logistically simpler than the previously described method of directly applying a sticky material to tree bark or applying a sticky material to tape or other type of backing and applying that to the tree bark.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call