Abstract

An interdigitated electrode array embedded within a micro-channel with forced flow is shown to enable dielectrophoretic (DEP) characterization of particles and/or cells based on measurements of their trapping percentage over a continuous frequency range. A simplified model of the trapping percentage, using spatial averaging of the convective and DEP force, linearly correlated it to the effective DEP force (in its positive mode). Thus, the Clausius-Mossotti factor was fitted to the experimental data, yielding effective electrical characteristics of the particles and/or cells. Also, the generated trapping percentage curve response over a continuous range of frequencies facilitates sorting and detection based on differences other than just the cross-over frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call