Abstract

The identification of carbon pools and the quantification of carbon stocks is necessary to (1) track changes in ecosystem dynamics, (2) inform science-based ecosystem and blue-carbon management, and (3) evaluate ecosystem and food web models. However, estimates of organic carbon stocks in marine ecosystems are incomplete or inconsistent. Therefore, we provide a first consistent estimate of relevant organic carbon stocks of a distinct marine ecosystem- the Baltic Sea. We estimate its contemporary standing stocks of 18 non-living and living organic carbon pools using data from literature and open-access databases. In contrast to existing data, our estimates are valid for the entire Baltic Sea, include necessary pools and are verifiable, as we describe data sources, methods and the associated uncertainties in detail to allow reproduction and critical evaluation. The total organic carbon (TOC) in the Baltic Sea ecosystem amounts to 1,050 ± 90 gC/m2 (440 ± 40 Mt). The non-living stocks account for about 98.8% and the living stocks for 1.2% of the TOC. Our estimates indicate that benthos has the highest living organic carbon stock and that the stock of particulate organic carbon (POC) has been underestimated in some previous studies. In addition, we find a partially inverted biomass distribution with a higher stock of primary consumers than primary producers. Our estimates provide a baseline of the size and distribution of the organic carbon in the Baltic Sea for the current period. Analyses of inorganic carbon stocks and the interplay between inorganic and organic stocks must follow to further define the baseline of total carbon stocks in the Baltic Sea.

Highlights

  • The identification of carbon pools and the quantification of carbon stocks is necessary to (1) track changes in ecosystem dynamics, (2) inform science-based ecosystem or blue carbon management, and (3) evaluate ecosystem and food web models

  • There is no estimate of the organic sediment carbon stock for the upper 10 cm for the entire Baltic Sea yet

  • To assess whether our estimate of 830 ± 90 gC/m2 is appropriate, we compare our result with the sediment carbon stock of the Northwest European (NWE) continental shelf by Diesing et al (2017)

Read more

Summary

Introduction

The identification of carbon pools and the quantification of carbon stocks is necessary to (1) track changes in ecosystem dynamics, (2) inform science-based ecosystem or blue carbon management, and (3) evaluate ecosystem and food web models To meet these needs in the Baltic Sea, we identify living and non-living organic carbon pools of the Baltic Sea ecosystem and quantify their contemporary stocks. Due to a strong meridional gradient of environmental factors, physical and biological characteristics differ within the Baltic Sea and shape very different habitats (i.e., Snoeijs-Leijonmalm and Andrén, 2017). Anthropogenic pressure, such as climate change, overfishing and eutrophication, is increasingly changing the Baltic Sea ecosystem and the size and distribution of its carbon stocks

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.