Abstract

We study the quantification of coherence in infinite dimensional systems, especially the infinite dimensional bosonic systems in Fock space. We show that given the energy constraints, the relative entropy of coherence serves as a well-defined quantification of coherence in infinite dimensional systems. Via using the relative entropy of coherence, we also generalize the problem to multi-mode Fock space and special examples are considered. It is shown that with a finite average particle number, increasing the number of modes of light can enhance the relative entropy of coherence. With the mean energy constraint, our results can also be extended to other infinite-dimensional systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.