Abstract
Phase synchrony is a powerful amplitudeindependent measure that quantifies linear and nonlinear dynamics between non-stationary signals. It has been widely used in a variety of disciplines including neural science and cognitive psychology. Current time-varying phase estimation uses either the Hilbert transform or the complex wavelet transform of the signals. This paper exploits the concept of phase synchrony as a mean to discriminate face processing from the processing of a simple control stimulus. Dependencies between channel locations were assessed for two separate conditions elicited by distinct pictures (representing a human face and a Gabor patch), both flickering at a rate of 17.5 Hz. Statistical analysis is performed using the Kolmogorov-Smirnov test. Moreover, the phase synchrony measure used is compared with a measure of association that has been previously applied in the same context: the generalized measure of association (GMA). Results show that although phase synchrony works well in revealing regions of high synchronization, and therefore achieves an acceptable level of discriminability, this comes at the expense of sacrificing time resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.