Abstract

To understand the effect of chemical composition, cross-link density, and microstructure on the linear and nonlinear viscoelasticity of ethylene propylene diene monomer (EPDM) rubber, we carried out high-frequency oscillatory shear molecular dynamics simulations at varying shear strain rates. Sweeping through different EPDM compositions with varying ethylene, propylene, and diene ratios, a positive correlation was observed between the ratio of the propylene monomer and the complex shear modulus of EPDM in the high-frequency glassy regime. For small deformations in this regime, we found that the simplest measure of local molecular stiffness, namely, the Debye–Waller factor, is predictive of the complex shear modulus and loss modulus of 20 unique systems with distinct compositions and cross-link densities. Polymer design parameters that reduce the Debye–Waller factor, including cross-linking or increased propylene content generally, result in higher moduli. Remarkably, large-amplitude oscillatory shear simulations revealed that dissipation becomes strongly influenced by polymer entanglements, which results in divergent optimal compositions for small-strain vs large-strain applications of EPDM. Utilizing time–temperature superposition and varying strain rates in simulations, we were able to capture rheological properties over 6 orders of magnitude in frequency. The data was captured well using a Rouse model superposed with a stretched exponential function, which was used to predict key constants that determine the mechanical behavior in these regimes. Our findings establish a chemistry-specific molecular simulation approach for capturing the constitutive behavior of elastomers and pave the way for multiscale analyses linking composition and microstructure to performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call