Abstract

Predicting impacts on phenology of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland biomass, represented by the satellite-based normalized difference vegetation index (NDVI), to daily rainfall. The application is a straightforward adaptation of a staged linear reservoir that simulates the pulse-like entry of rainwater into the soil and its redistribution as soil moisture, the uptake of water by plant roots, short-term biomass development, followed by the subsequent transpiration of water through foliage. The algorithm precludes the need for detailed, site specific information on soil moisture dynamics, plant species, and the local hydroclimate, while providing a direct link between discrete rainfall events and consequential biomass responses throughout the growing season. We applied the algorithm using rainfall data from the Central Plains Experimental Range to predict vegetation growth dynamics in the semi-arid shortgrass steppe of North America. The mean annual rainfall is 342 mm, which is strongly bifurcated into a dominantly ‘wet’ season, where during the three wettest months (May, June and July) the mean monthly rainfall is approximately 55 mm month−1; and a ‘dry’ season, where during the three driest months (December, January and February), the mean monthly rainfall is approximately 7 mm month−1. NDVI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 16 day, 250 m × 250 m product were used as a proxy for grassland phenology for the period-of-record 2000–2013. Allowing for temporal changes in basic parameters of the response function over the growing season, the predicted response of the model tracks the observed NDVI metric with correlation coefficients exceeding 0.92. A two-stage series reservoir is preferred, whereby the characteristic time for transfer of a rainfall event to the peak response of NDVI decreases from 24 days (early growing season) to 12 days (late growing season), while the efficiency of a given volume of rainfall to produce a correspondingly similar amount of aboveground biomass decreases by a factor of 40% from April to October. Behaviours of the characteristic time of greenup and loss of rainfall efficiency with progression of the growing season are consistent with physiological traits of cool-season C3 grasses versus warm-season C4 grasses, and with prior research suggesting that early season production by C3 grasses is more responsive to a given amount of precipitation than mid-summer growth of C4 shortgrasses. Our model explains >90% of seasonal biomass dynamics. We ascribe a systematic underprediction of observed early season greenup following drought years to a lagged or ‘legacy’ effect, as soil inorganic nitrogen, accumulated during drought, becomes available for future plant uptake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.