Abstract

China has the second-largest grassland area in the world. Soil organic carbon storage (SOCS) in grasslands plays a critical role in maintaining carbon balance and mitigating climate change, both nationally and globally. Soil organic carbon density (SOCD) is an important indicator of SOCS. Exploring the spatiotemporal dynamics of SOCD enables policymakers to develop strategies to reduce carbon emissions, thus meeting the goals of "emission peak" in 2030 and "carbon neutrality" in 2060 proposed by the Chinese government. The objective of this study was to quantify the dynamics of SOCD (0-100 cm) in Chinese grasslands from 1982 to 2020 and identify the dominant drivers of SOCD change using a random forest model. The results showed that the mean SOCD in Chinese grasslands was 7.791kg C m-2 in 1982 and 8.525kg C m-2 in 2020, with a net increase of 0.734kg C m-2 across China. The areas with increased SOCD were mainly distributed in the southern (0.411kg C m-2), northwestern (1.439kg C m-2), and Qinghai-Tibetan (0.915kg C m-2) regions, while those with decreased SOCD were mainly found in the northern (0.172kg C m-2) region. Temperature, normalized difference vegetation index, elevation, and wind speed were the dominant factors driving grassland SOCD change, explaining 73.23% of total variation in SOCD. During the study period, grassland SOCS increased in the northwestern region but decreased in the other three regions. Overall, SOCS of Chinese grasslands in 2020 was 22.623 Pg, with a net decrease of 1.158 Pg since 1982. Over the past few decades, the reduction in SOCS caused by grassland degradation may have contributed to soil organic carbon loss and created a negative impact on climate. The results highlight the urgency of strengthening soil carbon management in these grasslands and improving SOCS towards a positive climate impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.