Abstract
This study aims to characterize EEG complexity, measured as the prediction error resulting from nonlinear prediction, in healthy humans during photic stimulation. EEGs were recorded from 15 subjects with eyes closed (EC) and eyes open (EO), during the baseline condition and during stroboscopic photic stimulation (PS) at 5, 10, and 15 Hz. The mean squared prediction error (MSPE) resulting from nearest neighbor local linear prediction was taken as complexity index. Complexity maps were generated interpolating the MSPE index over a schematic scalp representation. Statistical analysis revealed that: i) EEG shows good predictability in all conditions and seems to be well explained by a linear stochastic process; ii) the complexity is lower with EC than with EO and increases significantly during PS, to a lesser extent during 10 Hz stimulation; iii) significant differences of EEG complexity are detectable between anterior-central and posterior scalp regions. Changes in EEG complexity during PS can be successfully assessed using nonlinear prediction. The observed modifications in the patterns of complexity seem to reflect neurophysiological behaviors and suggest future applicability of the method in clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.