Abstract

Focal adhesions and podosomes are integrin-mediated cell-substratum contacts that can be visualized using interference reflection microscopy (IRM). Here, we have developed automated image-processing procedures to quantify adhesion turnover from IRM images of live cells. Using time sequences of images, we produce adhesion maps that reveal the spatial changes of adhesions and contain additional information on the time sequence of these changes. Such maps were used to characterize focal adhesion dynamics in mouse embryo fibroblasts lacking one or both alleles of the vinculin gene. Loss of vinculin expression resulted in increased assembly, disassembly and/or in increased translocation of focal adhesions, suggesting that vinculin is important for stabilizing focal adhesions. This method is also useful for studying the rapid dynamics of podosomes as observed in primary mouse dendritic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.