Abstract

In marine adhesives, cation-π interactions play an important role in their liquid-liquid phase separation process and underlying their strong interfacial bonding. However, it remains challenging to study the strength of cation-π interactions at the single-molecule level. Here, we engineer a recombinant chimeric polyprotein containing the mussel foot proteins-5 (MFP5) and a finger print domain GB1 to unambiguiously quantify the strength of cation-π interactions using atomic force microscopy (AFM)-based single-molecule force spectroscopy. Our results show that the formation of intermolecular cation-π interactions can be triggered at elevated salt concentrations, consistent with previous ensemble studies. Individual cation-π interaction ruptures at about 70 pN at a pulling speed of 1.6 μm s−1, comparable to the strength of other non-covalent interactions. The strength of cation-π interactions is weakly dependent on pH, which is in stark contrast with the hydrogen bonding and charge-charge interactions. Moreover, we find that the position of the cation-π bonds are formed randomly along the polyprotein chains. The propensity of forming long range cation-π interactions increases considerably when increasing the pH from 4 to 8, presumably due to the neutralization of the positive changes of MFP5. Our study directly quantifies the mechanical strength of cation-π bonds in the biological relavent settings and reveals key design parameters that may inspire the design of biomimetic strong underwater adhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call