Abstract
Anthropogenic perturbation of the nitrogen cycle is attracting increasing attention as both an environmental and societal concern. Here, we provide the rationale and propose methods for independent treatment of anthropogenic mobilization, flows (in product systems) and emissions of fixed nitrogen in process-based environmental life cycle assessment. We propose a simple methodology for aggregating N flows in life cycle assessment (LCA), with supporting characterization factors for all nitrogen-containing compounds on the Organization for Economic Cooperation and Development High Production Volume Chemical List for which specific chemical formulae are available, as well as all nitrogen-containing flows in the International Reference Life Cycle Data System. We subsequently apply our method and characterization factors to a life cycle inventory data set representing a subset of the consumption attributable to an average EU-27 consumer and compare the results against previously published estimates for nitrogen emissions at the consumer level that were generated using alternative methods/approaches. We derive a suite of over 2,000 characterization factors for nitrogen-containing compounds. Overall, the results generated by applying our method and characterization factors to the European Commission Basket-of-Products life cycle inventory data set are consistent with those observed from studies having a similar scope but different methodological approach. This outcome suggests that anthropogenic mobilization, flows (in product systems) and emissions of fixed nitrogen can, indeed, be systematically inventoried and aggregated in process-based LCA for the purpose of better understanding and managing anthropogenic impacts on the global nitrogen cycle using the methods and characterization factors we propose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Life Cycle Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.