Abstract

Anthropogenic emissions are recognized as significant contributors to atmospheric soluble iron (Fe) in recent years, which may affect marine primary productivity, especially in Fe-limited areas. However, the contribution of different emission sources to Fe in marine aerosol has been primarily estimated by modeling approaches. Quantifying anthropogenic Fe based on field measurements remains a great challenge. In this study, online multi-element measurements and Positive Matrix Factorization (PMF) were combined for the first time to quantify sources of atmospheric Fe and soluble Fe in the Northwest Pacific during a cruise in spring 2015. Fe concentration in 624 atmospheric PM2.5 samples measured online was 74.58 ± 90.87 ng/m3. The PMF results showed anthropogenic activities, including industrial coal combustion, biomass burning, and maritime transport, were important in this region, contributing 31.4 % of atmospheric Fe on average. In addition, anthropogenic Fe concentration resolved by PMF was comparable to the simulation results of the CMAQ (Community Multiscale Air Quality) and GEOS-Chem (Goddard Earth Observing System-Chemical transport) models, with better correlation to CMAQ (r = 0.76) than GEOS-Chem (r = 0.26). This study developed a new method to estimate atmospheric soluble Fe, which integrates Fe source apportionment results and Fe solubility from different sources. Soluble Fe concentration was estimated as 3.93 ± 5.14 ng/m3, of which 87.0 % was attributed to anthropogenic emissions. Notably, ship emission alone contributed 27.5 % of soluble Fe, though its contribution to total Fe was only 2.2 %. Finally, the total deposition fluxes of atmospheric Fe (37.11 ± 38.43 μg/m2/day) and soluble Fe (1.85 ± 2.13 μg/m2/day) were estimated. This study developed a new methodology for quantifying contribution of anthropogenic emissions to Fe in marine aerosol, which could greatly help the assessment of impacts of human activities on marine environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call