Abstract
The diffusion of a solute, fluorescein into lysozyme protein crystals has been studied by confocal laser scanning microscopy (CLSM). Confocal laser scanning microscopy makes it possible to non-invasively obtain high-resolution three-dimensional (3-D) images of spatial distribution of fluorescein in lysozyme crystals at various time steps. Confocal laser scanning microscopy gives the fluorescence intensity profiles across horizontal planes at several depths of the crystal representing the concentration profiles during diffusion into the crystal. These intensity profiles were fitted with an anisotropic model to determine the diffusivity tensor. Effective diffusion coefficients obtained range from 6.2 x 10(-15) to 120 x 10(-15) m2/s depending on the lysozyme crystal morphology. The diffusion process is found to be anisotropic, and the level of anisotropy depends on the crystal morphology. The packing of the protein molecules in the crystal seems to be the major factor that determines the anisotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.