Abstract

Agriculture in regions with limited water availability is possible because of irrigation. Irrigated croplands are expanding, and irrigation water demand is increasing. Nevertheless, there is a limited understanding of how much water is consumed for irrigation and how effective irrigation increases crop productivity in various climates. In this study, we aim to understand how irrigation water affects crop productivity in different climates. To achieve this goal, we developed a simple approach to quantify irrigation quantities from SMAP satellite soil moisture observations based on a zero-dimensional bucket-type hydrology model. The central assumption is that irrigation quantities can be estimated from the gap between the modeled and observed soil moisture by iteratively providing irrigation as a model input until the soil moisture simulations agree well with the observations. We then used the estimated amount of irrigation to simulate water, energy, and carbon fluxes at two agricultural sites on the west coast of the US: one that was water-limited (Central Valley, CA) and one that was energy-limited (Eugene, OR). An agroecosystem model, AgroIBIS-VSF, was used to conduct simulations. To verify our simulations, we used data from two AmeriFlux Eddy covariance towers at each site. We found that incorporating estimated irrigation amounts into our simulations improved the accuracy of energy balance components and soil moisture predictions, reducing the root-mean-square error of soil moisture predictions by up to 22%. We also discovered that the irrigation value, in terms of increased productivity of actual irrigation water used, is more than five times more valuable at the energy-limited site than at the water-limited site. Soil hydraulic properties have a strong influence on irrigation water valuation. Our study highlights the potential of satellite soil moisture observations to improve our understanding of water productivity in different climates. By better understanding the efficiency of resources used for crop production, we can ensure the sustainability and resilience of agricultural systems, leading to better management practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call