Abstract

We discuss the uncertainty associated with a commonly used method for measuring the concentration of microcystin, a group of toxins associated with cyanobacterial blooms. Such uncertainty is rarely reported and accounted for in important drinking water management decisions. Using monitoring data from Ohio Environmental Protection Agency and from City of Toledo, we document the sources of measurement uncertainty and recommend a Bayesian hierarchical modeling approach for reducing the measurement uncertainty. Our analysis suggests that (1) much of the uncertainty is a result of the highly uncertain "standard curve" developed during each test and (2) the uncertainty can be reduced by pooling raw test data from multiple tests. Based on these results, we suggest that estimation uncertainty can be effectively reduced through the effort of either (1) regional regulatory agencies by sharing and combining raw test data from regularly scheduled microcystin monitoring program or (2) the manufacturer of the testing kit by conducting additional tests as part of an effort to improve the testing kit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.