Abstract
The presence of intrinsic ion migration in metal halide perovskites (MHPs) is one of the main reasons that perovskite solar cells (PSCs) are not stable under operation. In this work, we quantify the ion migration of PSCs and MHP thin films in terms of mobile ion concentration (No) and ionic mobility (µ) and demonstrate that No has a larger impact on device stability. We study the effect of small alkali metal A-site cation additives (e.g., Na+, K+, and Rb+) on ion migration. We show that the influence of moisture and cation additive on No is less significant than the choice of top electrode in PSCs. We also show that No in PSCs remains constant with an increase in temperature but μ increases with temperature because the activation energy is lower than that of ion formation. This work gives design principles regarding the importance of passivation and the effects of operational conditions on ion migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.