Abstract

Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration.

Highlights

  • Ecosystem services are the benefits people obtain from ecosystems upon which human well-being largely depends [1]

  • Our basic approach involves four steps: (1) estimating and mapping the supply of carbon storage using Light Detection and Ranging (LiDAR) technology and allometric models, (2) estimating and mapping the annual supply of carbon sequestration based on carbon gains from biomass growth and carbon loss from tree mortality and decay, (3) estimating and mapping demand for carbon sequestration based on the intensity of CO2 emissions by a set of human activities under the assumption that demand for carbon sequestration service increases with anthropogenic carbon emissions, and (4) analyzing the relationship between the supply of this service and the demand for it (Fig 2)

  • In this study we presented a method for assessing both the supply and demand for an ecosystem service, carbon storage and sequestration by urban trees, as well as the relationship between this supply and demand, in a spatially explicit manner that could inform local policy making related to climate change mitigation

Read more

Summary

Introduction

Ecosystem services are the benefits people obtain from ecosystems upon which human well-being largely depends [1]. Mapping Supply of and Demand for Carbon Storage and Sequestration categories: regulating services (e.g., pollination, climate regulation, air quality regulation, water purification), provisioning services (e.g., food production, biomass, freshwater, mineral resources), supporting services (e.g., nutrient cycling, primary production, soil formation) and cultural services (e.g., recreation, aesthetic views, cultural heritage) [1]. Despite their wide recognition in biological conservation and natural resource management, ecosystem services are not well-integrated in land-use planning and management [2]. Ecosystems services are the products of ecosystem structures and functions that do contribute to human well-being [5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call