Abstract

The effect of disparity in the reactivity ratios of monomer pairs on the composition distribution and microstructure of the resultant copolymer formed through free-radical polymerization is quantified computationally. This correlation has been determined for the monomer pairs of styrene/methyl methacrylate and styrene/2-vinyl pyridine for a variety of monomer feed ratios. These monomer pairs were chosen as they represent systems that have been utilized to experimentally examine the importance of copolymer architecture on its ability to compatibilize an immiscible polymer blend. Moreover, their respective random copolymers show conflicting results for this examination. The results of this work show that the difference in the reactivity ratios of styrene and 2-vinyl pyridine copolymer (r1 = 0.5, r2 = 1.3) significantly broadens the composition and randomness distribution of the resultant copolymer. This breadth is not easily avoided as it evolves even in the early stages of the copolymerization. Conversely, for the styrene/methyl methacrylate pair, the reactivity ratios are similar (r1 = 0.46, r2 = 0.52) and this results in a copolymer with a narrow composition distribution and sequence distribution dispersion. Stopping the polymerization at early conversion further narrows both distributions. The presented results, therefore, provide fundamental information that must be considered when planning an experimental procedure to evaluate the relative importance of sequence distribution and composition distribution of a random on its application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.